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Abstract

A Frontal-Delaunay refinement algorithm for mesh generation in piecewise smooth domains is described. Built using a restricted
Delaunay framework, this new algorithm combines a number of novel features, including: (i) an unweighted, conforming restricted
Delaunay representation for domains specified as a (non-manifold) collection of piecewise smooth surface patches and curve
segments, (ii) a protection strategy for domains containing curve segments that subtend sharply acute angles, and (iii) a new class
of off-centre refinement rules designed to achieve high-quality point-placement along embedded curve features. Experimental
comparisons show that the new Frontal-Delaunay algorithm outperforms a classical (statically weighted) restricted Delaunay-
refinement technique for a number of three-dimensional benchmark problems.
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1. Introduction

Given a general three-dimensional domain, described by a network of curves Γ ⊂ R3, a collection of surfaces
Σ ⊂ R3 and enclosed volumes Ω ⊂ R3, the meshing problem consists of tessellating Γ, Σ and Ω into a mesh of
non-overlapping simplexes (edges, triangles and tetrahedrons), such that all geometrical, topological and user-defined
constraints are satisfied. While some input domains can be described in terms of smooth entities, it is typical to deal
with objects that are only piecewise-smooth, consisting of locally manifold surface patches that meet at sharp 0- or
1-dimensional features. Additionally, domains can incorporate so-called free curve and vertex constraints, compris-
ing sets of entities unconnected to the bounding surface patches Σ. In this study, a new Delaunay-refinement type
algorithm is presented to construct meshes for piecewise smooth domains – forming a Delaunay tetrahedralisation
that includes a subset of restricted edges, triangles and tetrahedrons that provide provably-good topological and geo-
metrical approximations to the input curve network Γ, surface structure Σ and enclosed volume Ω. Using a new class
of off-centre refinement rules, the proposed algorithm is cast as a Frontal-Delaunay scheme – seeking to extend the
surface- and volume-meshing techniques presented by the author in [1–3]. Compared to existing restricted Delaunay-
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refinement techniques, the methods described here incorporate a number of novel features, including: (i) the use of
a conforming, unweighted restricted Delaunay representation for piecewise smooth geometries, (ii) the development
of a new collar-based method to protect sharply acute features present in the input geometry, and (iii) the use of
off-centre point-placement rules to refine curve, surface and volumetric elements in a provably-good manner.

Nomenclature

X A set of points in R3, associated with the tessellation.
Del(X) The Delaunay triangulation of the points X.
Vor(X) The Voronoi complex associated with the points X.
Γ,Σ,Ω The input geometry: a collection of curve segments, surface patches and volumes embedded in R3.
Del |Γ(X) A Delaunay sub-complex Del |Γ(X) ⊆ Del(X), restricted to the curve network Γ. Del |Γ(X) contains

any 1-simplex e ∈ Del(X) whose dual Voronoi face v f ⊆ Vor(X) intersects Γ (See Figure 1(ii)–1(iii)).
Del |Σ(X) A Delaunay sub-complex Del |Σ(X) ⊆ Del(X), restricted to the surfaces patches Σ. Del |Σ(X) contains

any 2-simplex f ∈ Del(X) whose dual Voronoi edge ve ⊆ Vor(X) intersects Σ (See Figure 1(ii)–1(iii)).
Del |Ω(X) A Delaunay sub-complex Del |Ω(X) ⊆ Del(X), restricted to the interior volumes Ω. Del |Ω(X) contains

any 3-simplex τ ∈ Del(X) with a dual Voronoi vertex vx ⊆ Vor(X) interior to Ω (See Figure 1(ii)–1(iii)).
ρd(τ) The radius-edge ratio associated with a d-simplex τ. Defined as the ratio of the radius of the circumball

of τ to the length of its shortest edge.
ε1(e) The surface discretisation error associated with a 1-simplex e ∈ Del |Γ(X). Defined as the length from

the centre of SDB1(e) to the centre of the diametric ball of e.
ε2( f ) The surface discretisation error associated with a 2-simplex f ∈ Del |Σ(X). Defined as the length from

the centre of SDB2( f ) to the centre of the diametric ball of f .
SDB1(e) The surface Delaunay ball B(ce, r) associated with a 1-simplex e ∈ Del |Γ(X). Balls are centred at

intersections between the Voronoi faces v f ∈ Vor(X) and the curve network Γ, such that ce = v f ∩ Γ.
SDB2( f ) The surface Delaunay ball B(c f , r) associated with a 2-simplex f ∈ Del |Σ(X). Balls are centred at

intersections between the Voronoi edges ve ∈ Vor(X) and the surface patches Σ, such that c f = ve ∩ Σ.
h̄(x) The mesh-size function. A function f (x) : R3 → R+ defining the target edge length at points x ∈ Ω.
v(τ), a( f ) The volume- and area-length ratios for a given tetrahedron τ or triangle f . Defined as v(τ) = V/‖e‖3rms

and a( f ) = A/‖e‖2rms, where V and A are signed volumes and areas, respectively, and ‖e‖rms is the root-
mean-square edge length.

The reader is referred to [4] for formal definitions, discussions and proofs.

1.1. Preliminaries

Many successful three-dimensional meshing algorithms employ Delaunay-based strategies [5–14], based on the
progressive refinement of a coarse initial Delaunay triangulation that spans the input geometry. At each step, ele-
ments that violate a set of constraints are identified and the worst offending elements are eliminated. Elimination is
achieved through the insertion of additional Steiner-vertices located at the so-called refinement-points associated with
the elements in question. Delaunay-refinement algorithms have been developed for planar [5–7], surface [12,13] and
volumetric domains [9,15,16]. The reader is referred to [4] for additional information and summary.

This study is focused on use of the so-called restricted Delaunay methodology [11,14,17] to provide a framework
for the approximation of 1-, 2- and 3-dimensional topological features via Delaunay sub-complexes. Such techniques
have been the focus of previous work, including, for example [4,11–13] and previous studies by the author in [1–3],
where it has been shown that various geometrical and topological guarantees of fidelity are achieved through a careful
sampling of the geometrical inputs. Compared to other approaches, the restricted Delaunay framework incorporates
a number of desirable characteristics, chiefly: (i) the ability to sample curve-, surface- and volumetric-features in a
unified manner, and (ii) the development of geometry-agnostic meshing algorithms. These characteristics are useful
from both a theoretical and software development standpoint: the use of a unified meshing framework obviates non-
trivial difficulties associated with the construction of constrained Delaunay complexes that conform to curve and
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Fig. 1. Restricted Delaunay tessellations for a smooth domain in R2, showing (i) the bounding contour Σ and enclosed interior Ω, (ii) the Delaunay
tessellation Del(X) and Voronoi diagram Vor(X), and (iii) the restricted boundary and interior tessellations Del |Σ(X) and Del |Ω(X). In three-
dimensions, the restricted surface triangulation Del |Σ(X) is a triangular complex that covers the surface Σ. The restricted volume tessellation
Del |Ω(X) is a tetrahedral complex that fills the volume Ω.

surface constraints [18,19], while the use of a geometry-agnostic formulation facilitates the development of meshing
software that supports a broad class of input geometry types and definitions.

Consistent with previous work by the author [1–3], the present study combines the restricted Delaunay frame-
work with a so-called Frontal-Delaunay methodology – seeking to achieve very high-quality Delaunay-based mesh
generation through use of a hybrid, advancing-front type strategy. Using an appropriate set of off-centre point-
placement rules, the Frontal-Delaunay approach aims to combine the best features of classical Delaunay-refinement
and advancing-front type techniques, leading to high-quality Delaunay meshes that satisfy a theoretical bounds and
guarantees. It is expected that this algorithm may be of interest to users who place a high premium on mesh quality,
including those operating in the areas of computational engineering and numerical simulation.

The present study is organised as follows: an overview of the restricted Delaunay framework is presented in
Section 2, including a detailed discussion of the techniques used to recover restricted Delaunay edges, triangles and
tetrahedrons. A hierarchical restricted Delaunay-refinement algorithm is presented in Section 3, with a new class of
curve-based off-centre refinement rules described in Section 4. A technique for the protection of acute features is
presented in Section 5, allowing domains containing curve features that subtend arbitrarily small angles to be meshed.
Comparisons between a conventional (statically-weighted) restricted Delaunay-refinement algorithm and the proposed
Frontal-Delaunay scheme is presented in Section 7, contrasting output quality and computational performance.

2. Restricted Delaunay Edges, Triangles & Tetrahedrons

The meshing algorithms presented in this study are based on the restricted Delaunay paradigm – a hierarchy of
Delaunay sub-complexes that provide consistent and conforming approximations to embedded geometrical features.
In the context of three-dimensional meshes, the bounding Delaunay tessellation Del(X) is a tetrahedral complex – of
sufficient size to enclose the input domain. Embedded within Del(X) are a set of restricted Delaunay sub-complexes:
Del |Γ(X), Del |Σ(X) and Del |Ω(X), providing discrete approximations to the curve network Γ, surface structure Σ and
interior volumes Ω, respectively. The restricted curve complex Del |Γ(X) ⊆ Del(X) contains the set of 1-simplexes
e ∈ Del(X) that provide good piecewise linear approximations to the curve network Γ. Similarly, the restricted surface
and volume complexes Del |Σ(X) ⊆ Del(X) and Del |Ω(X) ⊆ Del(X) contain the sets of 2- and 3-simplexes f ∈ Del(X)
and τ ∈ Del(X) that provide good approximations to the surface patches Σ and volumes Ω. An overview of these
concepts is provided in, for example [4,11–14].

Restricted Delaunay techniques exploit the duality between Delaunay tessellations and Voronoi complexes – us-
ing such considerations to compute membership for the restricted Delaunay sub-complexes Del |Γ(X), Del |Σ(X) and
Del |Ω(X). Specifically, Del |Ω(X) contains any 3-simplex τi that is associated with an internal Voronoi vertex vi ∈ Ω,
while Del |Σ(X) contains any 2-simplex f j associated with a Voronoi segment vab ∈ Vor(X) such that vab∩Σ , ∅. These
are well-known results. Less widely utilised is a mechanism for identifying the restricted 1-simplexes embedded in
a tetrahedral complex. In [20], Rineau and Yvinec present a methodology based on dual Voronoi-faces. Specifically,
Del |Γ(X) contains any 1-simplex ek associated with a Voronoi face v f ⊆ Vor(X) such that v f ∩ Γ , ∅. Note that, by
definition, the faces of the Voronoi complex v f are convex polygons, oriented normally to their associated Delaunay
edges. See Figure 2(ii) for details.
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Fig. 2. A restricted Delaunay 1-simplex e ∈ Del |Γ(X) associated with a curve segment Γ, showing (i) the intersection of the associated Voronoi face
v f ⊆ Vor(X) and the curve network Γ, (ii) the associated Surface Delaunay Ball SDB(e), where r1(e) denotes the SDB radius and ε1(e) the surface
discretisation error, and (iii) the off-centre type refinement rule, showing the placement of a locally size-optimal point c(2) about a frontal vertex x1.

Each element in a restricted Delaunay sub-complex is also associated with a circumscribing ball. For tetrahedrons
in Del |Ω(X) such balls are simply the circumscribing spheres that pass through their vertices. For edges in Del |Γ(X)
and triangles in Del |Σ(X), each element is instead associated with a so-called Surface Delaunay Ball SDB(τi). These
balls are the circumscribing spheres centred upon intersections of the associated Voronoi dual with the input geometry.
In the case of multiple intersections, the ball of maximum radius is selected. See Figure 2(i) for details. Surface balls
also support a discrete measure of geometrical fidelity. Specifically, given an edge or surface element ek ∈ Del |Γ(X)
or f j ∈ Del |Σ(X), the distance between the centres of the associated diametric ball and surface ball is a one-sided
Hausdorff metric – a measure of the geometrical error induced by the piecewise linear Delaunay mesh.

3. A Restricted Delaunay-refinement Algorithm

An algorithm for the meshing of piecewise smooth complexes embedded in R3 is presented here, as an extension
of previous work by the author in [1–3] and by various other authors, including: Rineau and Yvinec [20], Cheng,
Dey and Shewchuk [4], Cheng, Dey and Levine [21], and Oudot, Rineaua and Yvinec [22]. This method is related to
the CGALMESH algorithm – a classical restricted Delaunay-refinement approach available as part of the CGAL library
[23], and summarised by Jamin, Alliez, Yvinec and Boissonnat in [14]. The algorithm presented here differs signif-
icantly in the methodology used for the recovery of 1-dimensional features. Specifically, in the current work, curve
constraints are represented as an (unweighted) conforming restricted Delaunay sub-complex, as outlined in Section 2,
and consistent with the techniques described by Rineau and Yvinec in [20]. The CGALMESH algorithm is instead based
on a so-called protecting-balls strategy [4,21], in which a static discretisation of the curve network Γ is conducted as
an initialisation step, with the resulting edge segments protected by a suitably-weighted Delaunay tessellation. Such
a strategy preserves edge constraints throughout the subsequent surface- and volume-refinement iterations, though it
does not guarantee that element quality thresholds are satisfied in the neighbourhood of such constraints. In some
cases, this behaviour can lead to the creation of lower-quality elements adjacent to 1-dimensional features.

3.1. Preliminaries

As per Jamin et al. [14], the restricted Delaunay-refinement algorithm is geometry-agnostic, being independent of
the specific definition of Γ, Σ and Ω. It is required only that a so-called oracle predicate is supported, used to compute:
(i) the intersection of convex polygons (Voronoi faces) with the curve network Γ (ii) the intersection of line segments
(Voronoi edges) with the surface patches Σ, and (iii) the intersection of points (Voronoi vertices) with the enclosed
volume Ω. The Frontal-Delaunay algorithm presented in subsequent sections additionally requires the computation
of intersections with respect to spheres and oriented disks. In this study, attention is restricted to so-called re-meshing
operations, in which the input geometry is specified in terms of discrete polylines and triangulated surfaces. This
restriction is made to facilitate the construction of simple oracle predicates. The development of predicates for more
general inputs, including domains defined by implicit, parametric and analytic functions, is slated for future work.

Following Jamin et al. [14], the Delaunay-refinement algorithm takes as input a volumetric domain Ω, described
by an enclosing (possibly non-manifold) surface Σ ⊆ R3, a network of curve segments Γ ⊆ R3, an upper bound on the
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allowable element radius-edge ratio ρ̄, a mesh size function h̄(x) defined at all points spanned by the domain, and an
upper bound on the allowable surface discretisation error ε̄(x). The algorithm returns a discretisation T |Γ of the curve
network Γ, a triangulation T |Σ of the surface patches Σ, and a triangulation T |Ω of the enclosed volume Ω. Here T |Γ,
T |Σ and T |Ω are restricted Delaunay sub-complexes, such that T |Γ = Del |Γ(X), T |Σ = Del |Σ(X) and T |Ω = Del |Ω(X).
Note that Del |Γ(X) is an edge complex, Del |Σ(X) is a triangular complex, and Del |Ω(X) and Del(X) are tetrahedral
complexes. The Delaunay-refinement algorithm is summarised in Algorithm 3.1.

The Delaunay-refinement algorithm is designed to provide a number of geometrical and topological guarantees
on the output mesh, specifically: (i) that all elements in the volumetric tessellation τ ∈ T |Ω satisfy constraints on
both the element shape and size, such that ρ(τ) ≤ ρ̄, and h(τ) ≤ h̄(xτ), (ii) that all elements in the embedded surface
triangulation f ∈ T |Σ are guaranteed to satisfy similar element shape and size constraints, in addition to an upper
bound on the allowable surface discretisation error, such that ε( f ) ≤ ε̄(x f ), (iii) that the surface triangulation T |Σ
is topologically-consistent, ensuring that Del |Σ(X) is uniformly 2-manifold in its interior, and is consistent with the
input geometry at non-manifold features, (iv) that all elements in the embedded curve triangulation e ∈ T |Γ are
guaranteed to satisfy similar element size and surface error constraints, and (v) that the curve discretisation T |Γ is also
topologically-consistent, ensuring that Del |Γ(X) is uniformly 1-manifold in its interior, and is consistent with the input
geometry at non-manifold features. Making use of properties of the restricted Delaunay tessellation [17], it is known
that the triangulations T |Γ, T |Σ and T |Ω are good piecewise linear approximations to the input curves Γ, surfaces Σ and
volumes Ω, provided that the magnitude of the mesh-size function h̄(x) is sufficiently small. Under such conditions
it is known that the triangulations T |Γ, T |Σ and T |Ω are homeomorphic to the underlying curve, surface and volume
definitions Γ, Σ and Ω, and that the geometrical properties of T |Γ, T |Σ and T |Ω converge to the exact set of normals,
curvatures, lengths, areas and volumes associated with the input geometry as h̄(x)→ 0.

3.2. Refinement Loop

The Delaunay-refinement algorithm begins by pre-processing the input geometry – seeking to identify any sharp-
features inscribed on the input curve and surface collections. These 0- and 1-dimensional features can be induced by
both geometrical and topological constraints, including: (i) features that form sharp creases or corners in Γ and/or
Σ, and (ii) features at the apex of non-manifold topological connections. After pre-processing, an initial point-wise
sampling of the input curve and surface segments Γ and Σ is created. Exploiting the discrete representations available,
the initial sampling is obtained in this study as a well-distributed1 subset of the existing vertices Y ∈ P, where P is the
polyhedral representation of the curve and surface segments Γ and Σ. In the next step, the initial triangulation objects
are formed. In this work, the full-dimensional Delaunay tessellation, Del(X), is built using an incremental Delaunay
triangulation algorithm, based on the Bowyer-Watson technique [24]. The restricted curve, surface and volumetric
triangulations, Del |Γ(X), Del |Σ(X) and Del |Ω(X), are derived from the topology of Del(X) by explicitly testing for
intersections between the faces of the associated Voronoi complex Vor(X) and the input curve and surface segments Γ

and Σ. These queries are computed efficiently by storing the polyhedral geometry P in an aabb-tree [3,25].
The main loop of the algorithm proceeds to incrementally refine any restricted 1-, 2- or 3-simplexes found to be

in violation of one or more geometrical or topological constraints. Specifically, in steps 3, 5 and 7, any simplexes
e ∈ Del |Γ(X), f ∈ Del |Σ(X) or τ ∈ Del |Ω(X) found to violate a set of local topological, radius-edge, mesh-size or
surface-error constraints are refined – through the introduction of a new Steiner point ce, c f or cτ located at the centre
of the associated surface balls B(ce, r), B(c f , r) or circumscribing ball B(cτ, r). Importantly, refinement proceeds in a
hierarchical manner, with the insertion of c f and cτ dependent on several additional constraints designed to preserve
the consistency of the lower dimensional tessellations Del |Γ(X) and Del |Σ(X). Specifically, in steps 5a–5b and 7a–7d
a set of encroachment conditions are enforced, with refinement cascading onto lower-dimensional simplexes if a set
of geometrical or topological constraints are violated. In steps 5a and 7a, 7c, if c f or cτ are found to lie within the
surface balls B(ce, r) or B(c f , r) of an existing curve or surface facet, that facet is instead refined, through the insertion
of a Steiner vertex located at the centre of the associated surface ball ce or c f . This process can be seen simply as
an extension of the standard edge-encroachment scheme used in Ruppert’s two-dimensional refinement algorithm. In

1 A subset of seed vertices Z are sampled from P, such that Z is well-separated. Specifically, each new point zn is chosen to maximise the
minimum distance to the existing points z1 . . . zn−1. In this study n = 8 is used throughout. See [4] for a provably-good initialisation technique.
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Algorithm 3.1 Three-dimensional Restricted Delaunay-refinement

1: function DelaunayMesh(Γ,Σ,Ω, ρ̄, ε̄(x), h̄(x),T |Γ,T |Σ,T |Ω)

2: Form an initial pointwise sampling X such that X is well-distributed on Γ and Σ. Compute the Delaunay tessellation Del(X)
and the restricted curve, surface and volume tessellations Del |Γ(X), Del |Σ(X) and Del |Ω(X).

3: If some 1-simplex e ∈ Del |Γ(X) violates BadSimplex1(e), form the Steiner point ce associated with e, insert ce into X, update
Del(X) and the restricted tessellations Del |Γ(X), Del |Σ(X) and Del |Ω(X) and go to step 3.

4: For all vertices p ∈ Del |Γ(X) compute cp ←TopoDisk1(p). If cp is non-null, insert cp into X, update Del(X) and the restricted
tessellations Del |Γ(X), Del |Σ(X) and Del |Ω(X) and go to step 3.

5: If some 2-simplex f ∈ Del |Σ(X) violates BadSimplex2( f ), form the Steiner point c f associated with f :

(a) If the point c f lies within a surface ball B(ce, r) associated with some 1-face e ∈ Del |Γ(X), insert ce into X instead,
update Del(X) and the restricted tessellations Del |Γ(X), Del |Σ(X) and Del |Ω(X) and go to step 3.

(b) Insert c f into X. If c f changes the topology of Del |Γ(X), find the largest adjacent surface ball B(ce, r), delete c f from X
and insert ce into X. update Del(X) and the restricted tessellations Del |Γ(X), Del |Σ(X) and Del |Ω(X) and go to step 3.

(c) Go to step 5.

6: For all vertices p ∈ Del |Σ(X) compute cp ←TopoDisk2(p). If cp is non-null, insert cp into X, update Del(X) and the restricted
tessellations Del |Γ(X), Del |Σ(X) and Del |Ω(X) and go to step 3.

7: If some 3-simplex τ ∈ Del |Ω(X) violates BadSimplex3( f τ), form the Steiner point cτ associated with τ:

(a) If the point cτ lies within a surface ball B(ce, r) associated with some 1-face e ∈ Del |Γ(X), insert ce into X instead,
update Del(X) and the restricted tessellations Del |Γ(X), Del |Σ(X) and Del |Ω(X) and go to step 3.

(b) If the point cτ lies within a surface ball B(c f , r) associated with some 2-face f ∈ Del |Σ(X), insert c f into X instead,
update Del(X) and the restricted tessellations Del |Γ(X), Del |Σ(X) and Del |Ω(X) and go to step 3.

(c) Insert cτ into X. If cτ changes the topology of Del |Γ(X), find the largest adjacent surface ball B(ce, r), delete cτ from X
and insert ce into X. update Del(X) and the restricted tessellations Del |Γ(X), Del |Σ(X) and Del |Ω(X) and go to step 3.

(d) Insert cτ into X. If cτ changes the topology of Del |Σ(X), find the largest adjacent surface ball B(c f , r), delete cτ from X
and insert c f into X. update Del(X) and the restricted tessellations Del |Γ(X), Del |Σ(X) and Del |Ω(X) and go to step 3.

(e) Go to step 7.

8: Return the final restricted Delaunay curve, surface and volume tessellations Del |Γ(X), Del |Σ(X) and Del |Ω(X).

9: end function

steps 5b and 7b, 7d, if the insertion of c f or cτ is found to modify the restricted triangulations Del |Γ(X) or Del |Σ(X),
the insertion is deferred onto an adjacent curve or surface facet. Specifically, the point c f or cτ is deleted from Del(X)
and a new Steiner vertex ce or c f , corresponding to the centre of the largest adjacent surface ball, is inserted instead.
This process ensures that the consistency of the curve and surface tessellations Del |Γ(X) and Del |Σ(X) is preserved by
subsequent refinement operations.

In additional to this element-by-element refinement, the topological consistency of the restricted curve and surface
tessellations is also enforced in aggregate, by ensuring that the set of 1- and 2-simplexes Ep ∈ Del |Γ(X) and Fp ∈

Del |Σ(X) adjacent to each vertex p ∈ Del(X) form locally 1- and 2-manifold features, known as topological 1- and
2-disks. Vertices adjacent to non-manifold connections trigger additional refinement operations, with the centres ce

and c f of the largest adjacent surface balls B(ce, r) and B(c f , r) associated with the simplexes e ∈ Ep and f ∈ Fp

inserted as new Steiner vertices until local topological consistency is recovered. Specifically, a cascade of new Steiner
vertices are inserted until the topology of Del |Γ(X) and Del |Σ(X), sampled at all points p ∈ Del(X), is equivalent to
that of the input curve and surface complexes Γ and Σ.

The refinement process continues until all radius-edge, mesh-size, surface-error and topological constraints are
satisfied for all simplexes e ∈ Del |Γ(X), f ∈ Del |Σ(X) and τ ∈ Del |Ω(X). The refinement process is priority scheduled,
with triangles f ∈ Del |Σ(X) and tetrahedrons τ ∈ Del |Ω(X) ordered according to their radius-edge ratios ρ( f ) and ρ(τ),
ensuring that the element with the worst ratio is refined at each iteration. Segments in Del |Γ(X) are ordered according
to the size of their surface balls. Mesh-size constraints are applied with respect to the size of the circumscribing balls
associated with each element. Specifically, the mean element sizes h(e) = 2 re, h( f ) =

√
3 r f and h(τ) =

√
8/3 rτ

are used throughout, where h(e), h( f ) and h(τ) denote the size associated with segments, triangles and tetrahedrons
respectively. The scalar coefficients represent mappings between circumball radii and edge length for equilateral
elements. In this study, mesh-size constraints are implemented as h(e) ≤ αh̄(xe), h( f ) ≤ αh̄(x f ) and h(τ) ≤ αh̄(xτ),
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Algorithm 3.2 Topological Disks & Termination Criteria

1: function TopoDisk1(p)

2: Find the set of 1-simplexes Ep ∈ Del |Γ(X) adjacent
to the vertex p.

3: If Ep is either empty or a valid topological 1-disk, re-
turn NULL. Otherwise, find the 1-simplex e ∈ Ep that
maximises the size of the associated surface Delau-
nay ball B(ce, r) and return ce.

4: end function
1: function TopoDisk2(p)

2: Find the set of 2-simplexes Fp ∈ Del |Σ(X) adjacent
to the vertex p.

3: If Fp is either empty or a valid topological 2-disk, re-
turn NULL. Otherwise, find the 2-simplex f ∈ Fp that
maximises the size of the associated surface Delau-
nay ball B(c f , r) and return c f .

4: end function

1: function BadSimplex1(e)

2:
if (ε1(e) > ε̄(xe)) return TRUE

if (h (e) > h̄(xe)) return TRUE

else, return FALSE

3: end function
1: function BadSimplex2( f )

2:

if (ε2( f ) > ε̄(x f )) return TRUE

if (h ( f ) > h̄(x f )) return TRUE

if (ρ2( f ) > ρ̄) return TRUE

else, return FALSE

3: end function
1: function BadSimplex3(τ)

2:
if (h(τ) > h̄(xτ)) return TRUE

if (ρ3(τ) > ρ̄) return TRUE

else, return FALSE

3: end function

where α = 4/3 is a constant factor designed to ensure that mean element size does not, on average, undershoot the
target size. The local mesh-size values h̄(xe), h̄(x f ) and h̄(xτ) are evaluated at the centres of the associated circumballs.

4. Feature Conforming Off-centre Steiner Points

Frontal-Delaunay algorithms are a hybridisation of advancing-front and Delaunay-refinement techniques, in which
a Delaunay triangulation is used to define the topology of a mesh while Steiner vertices are inserted consistent with
advancing-front type methodologies. In practice, such techniques have been observed to produce very high-quality
meshes, inheriting the smooth, semi-structured vertex placement of pure advancing-front methods and the optimal
mesh topology and robustness of Delaunay-based approaches. Such techniques have been employed in a number of
studies, including, for example [26–32] and previous work by the author [1–3].

4.1. Point-placement Strategy (Edge Segments)

The off-centre strategy used to refine curve segments is based on the surface- and volume-refinement techniques
previously developed by the author in [1–3]. Two candidate Steiner vertices are considered. Type I vertices, c(1),
are equivalent to conventional element circumcentres (positioned at the centre of the associated surface balls), and
are used to preserve global convergence. Type II vertices, c(2), are so-called size-optimal points, and are designed to
satisfy mesh-size constraints in a locally optimal fashion.

Given a refinable 1-simplex e ∈ Del |Γ(X), the Type II vertex c(2) is positioned at an intersection of the curve
network Γ, and a sphere S σ of radius h̄σ, centred on a vertex x1 ∈ e. The vertex c(2) is positioned such that it forms an
edge candidate σ about the frontal vertex x1, such that its size h(σ) satisfies h̄(x). Specifically, the length of the edge
σ is computed from local mesh-size information, such that:

h̄σ = 1
2

(
h̄(x1) + h̄(c(2))

)
. (1)

If h̄(x) is non-uniform, (1) is weakly non-linear and is solved approximately using an iterative procedure. In the case
of multiple intersections between the curve network Γ and the sphere S σ, the point c(2)

j that minimises the angle to the
frontal vector v is chosen, where v is oriented from the frontal vertex x1 to the centre of the surface ball B(ce, r). See
Figure 2(iii) for additional illustration.

4.2. Point-placement Strategy (Triangles & Tetrahedrons)

Similar techniques are used to refine triangles and tetrahedrons, with two candidate Steiner vertices used to balance
local optimality and global convergence guarantees. These methods are presented by the author in detail in [1,2].
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4.3. Point-placement Strategy (Off-centre Selection)

Given the sets of Type I and Type II off-centres c(1)
e, f , τ and c(2)

e, f , τ available for curve, surface and volume elements,
respectively, the positions of the associated refinement points ce, c f and cτ are calculated. These points are selected to
satisfy the limiting local constraints, setting

ce =

 c(2)
e , if

(
d(2)

e ≤ d(1)
e

)
c(1)

e , otherwise
and c f , τ =

 c(2)
f , τ, if

(
d(2)

f , τ ≤ d(1)
f , τ

)
and

(
d(2)

f , τ ≥ r0
)

c(1)
f , τ, otherwise

(2)

where d(i) = ‖c(i) − c0‖ are distances from the centre of the frontal facet to the Type I and Type II points, respectively
and r0 is the radius of the diametric ball associated with the frontal face or vertex. This cascading selection criteria en-
sures that refinement scheme smoothly degenerates to that of a conventional circumcentre-based Delaunay-refinement
strategy in limiting cases, while using locally optimal points where possible. Specifically, these constraints guarantee
that the refinement points for curve, surface and volume elements lie within a local safe region on the Voronoi complex
– being positioned on an adjacent Voronoi sub-face and bound between the circumcentre of the element itself and the
diametric ball of the associated frontal entity. See previous work by the author [1–3] for additional details.

4.4. Refinement Order

In addition to off-centre point-placement rules, the Frontal-Delaunay algorithm also relies on changes to the order
in which elements are refined. To better mimic the behaviour of advancing-front type methods, elements are refined
only if they are adjacent to existing frontal entities. In the case of curve facets e ∈ Del |Γ(X), the frontal vertex xi ∈ e
must be shared by at least one adjacent facet e j ∈ Del |Γ(X) that is converged – satisfying its associated topological
and geometrical constraints. In the case of surface triangles f ∈ Del |Σ(X) and interior tetrahedrons τ ∈ Del |Ω(X),
the frontal facet e0 ∈ f , f0 ∈ τ must either be a converged simplex e j ∈ Del |Γ(X), f j ∈ Del |Σ(X) or be shared by an
adjacent simplex f j ∈ Del |Σ(X), τ j ∈ Del |Ω(X) satisfying its associated constraints. In rare cases where no frontal
simplex can be found (such as in the initial stages of refinement, where all faces in Del(X) are still very coarse with
respect to h̄(x)), standard circumcentre-based refinement is used as a fall-back, ensuring convergence. Use of this type
of implicit frontal boundary between converged and un-converged elements is a common feature of Frontal-Delaunay
algorithms, with similar approaches used by, for example, [27–30].

4.5. Termination, Convergence & Correctness

The termination and convergence of the Frontal-Delaunay refinement algorithm can be analysed by considering
the behaviour of the point-placement rules described previously. For the sake of brevity, a full analysis is not included
here, instead a theoretical ‘sketch’ is presented. Firstly, it is important to note that the off-centre vertices selected by
the algorithm reduce to standard element circumcentres in limiting cases:

Remark 4.1. Let h̄(x) ≥ h̄0, h̄0 ∈ R+ be a positive mesh-size function and Del |Γ(Xk), Del |Σ(Xk) and Del |Ω(Xk) be
the restricted triangulation objects after k refinement steps. Given a refinable simplex e ∈ Del |Γ(Xk), f ∈ Del |Σ(Xk)
or τ ∈ Del |Ω(Xk), use of the Type II point-placement scheme is ‘declined’ if r ≤ h̄σ, where r is the radius of the
circumscribing ball B(xe, f ,τ, r) and h̄σ is the local element ‘length’ computed by the Type II point-placement rule.

This behaviour is a consequence of the off-centre selection rules (2), requiring that the refinement point for any 1-,
2- or 3-simplex is the off-centre candidate c(1) or c(2) that minimises the distance to the centre of the diametric ball
B(c0, r0) associated with the frontal face or vertex. Noting that c(1) and c(2) are located on an adjacent segment of
Vor(X), it is clear that ‖c(2) − c0‖ ≤ ‖c(1) − c0‖ only if r ≥ h̄σ.

Considering that standard, circumcentre-type insertion rules are recovered when elements become sufficiently
small, the overall termination of the algorithm is equivalent to that of a conventional circumcentre-based scheme.
In [20], Rineau and Yvinec analyse such an approach, and have shown that, under the assumption of non-acute input,
termination is guaranteed provided that:

ρ̄ f ≥
(√

2 + 2
)
ν0 and ρ̄τ ≥

(√
2 + 2

)
ν0

(
ν0 + 2

)
(3)
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where ν0 = 2µ0/γ0 is a mesh-size ratio, given µ0 as the maximum of h̄(x) over the surface patches Σ and γ0 as the
minimum of h̄(x) over the volumes Ω. Typically, the algorithm is found to outperform these bounds in practice.

Finite termination leads directly to a number of useful auxiliary guarantees on both the nature and quality of the
output tessellation. Adopting the conventional terminology, meshes generated using the Delaunay-refinement and
Frontal-Delaunay refinement algorithms presented here can be considered to be provably-good:

Remark 4.2. If the meshing algorithm terminates after k steps, the restricted curve, surface and volume sub-complexes
Del |Γ(Xk), Del |Σ(Xk) and Del |Ω(Xk) satisfy the following properties:

(A) size & shape-quality: The size and shape of elements in the output mesh satisfy several constraints. Specifi-
cally, all elements e ∈ Del |Γ(Xk), f ∈ Del |Σ(Xk) and τ ∈ Del |Ω(Xk) contain bounded radius-edge ratios and circumball
sizes, such that: (i) ρ( f ) ≤ ρ̄ f and ρ(τ) ≤ ρ̄τ, and (ii) h(e) ≤ αh̄(xe), h( f ) ≤ αh̄(x f ) and h(τ) ≤ αh̄(xτ), where α = 4/3

and h(e) = 2 re, h( f ) =
√

3 r f and h(τ) =
√

8/3 rτ are scaled circumball radii.

(B) approximation error: The surface discretisation error associated with the output mesh is bounded by a one-
sided threshold on the Hausdorff distance. Specifically, all elements e ∈ Del |Γ(Xk) and f ∈ Del |Σ(Xk), contain
bounded surface error measures, such that ε(e) ≤ ε̄(xe) and ε( f ) ≤ ε̄(x f ).

(C) topological consistency: The output mesh is consistent with the topology of the input geometry, consisting of
curve and surface tessellations that are locally 1- and 2-manifold in their interiors, and share the degree of the input
features at their boundaries.

The algorithm maintains a queue of bad elements, e ∈ Del |Γ(Xk), f ∈ Del |Σ(Xk), τ ∈ Del |Ω(Xk) and vertices
p ∈ Del(X), in violation of one or more local constraints. Given that termination of the algorithm is guaranteed, it is
clear that the refinement queues must become empty, and that the output mesh satisfies the requisite geometrical and
topological constraints as a result.

The development of a full theoretical model of termination, convergence and correctness for the new algorithms
presented here is the subject of a forthcoming publication.

5. Protecting Sharp Angles Between Curves

Like all Delaunay-refinement type methods, the restricted Delaunay-refinement and Frontal-Delaunay algorithms
presented here suffer from issues of non-convergence when the input domain contains sharply acute features. In
such cases, a special-case pre-processing phase is required to identify and to protect such features. In this study, a
technique to protect sharp angles subtended by 1-dimensional features is described. The development of a generalised
procedure for sharp features between 2-dimensional surface patches is deferred for future investigation. Specifically,
a process modelled on the two-dimensional corner-lopping procedure of Pav and Walkington [33] and the three-
dimensional protective-collar techniques of Rand and Walkington [34,35] is adopted, in which a small subset of the
domain, adjacent to any sufficiently sharp features, is pre-processed and quarantined from subsequent refinement
operations. Note that this collar-based approach is fundamentally different from the standard protecting-ball type
techniques utilised in other (statically weighted) restricted Delaunay-refinement algorithms [4,14,21]. Specifically, in
the current work, a standard (unweighted) Delaunay triangulation is forced to conform to sharp-features in the input
geometry via a judicious arrangement of local Steiner vertices.

Given a sharply acute internal angle Ai j ≤ π/3 formed by any pair of segments i, j in the curve network Γ, the
protection process proceeds in a staged fashion: (i) a vertex xA is introduced at the apex of the sharp angle Ai j,
(ii) two new vertices xi, x j are positioned along the incident curve segments i, j ∈ Γ, such that an isosceles triangle
candidate [xA, xi, x j] is formed. Specifically, the points xi, x j are positioned at the intersection of a ball of radius rA,
centred at xA, and the curve network Γ. Ideally, the radius rA should be chosen to reflect the local-feature-size at the
apex of the sharp angle lfs(xA). In practice, such a quantity is hard to compute reliably, and the radius rA is computed
using an iterative procedure in the present work instead. In this process, the local mesh-size h̄(xA) is used as an
initial guess for the radius rA. The radius is then iteratively reduced until: (i) there exist exactly two intersections
between the ball B(xA, rA) and the curve network Γ, and (ii) the ball B(xA, βrA) is empty of intersections with other
balls centred on protected features in Γ. Here, the scalar β ≥ 1 is a spacing-factor, ensuring that adjacent balls are
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sufficiently well separated. In this study β = 3/2 is used. The protection procedure presented here is similar to the
SplitBall operator described in [33] for two-dimensional piecewise smooth domains.

Noting that such a set of protecting balls is disjoint, and that the candidate vertices describe sets of well-centred2

isosceles triangles, it is clear that the Delaunay tessellation Del(X) contains both the protected edge segments [xA, xi]
and [xA, x j], in addition to the triangles [xA, xi, x j], thus constituting a conforming Delaunay triangulation of the
sharp features in Γ. Clearly, these protected elements are also automatically included in the restricted sub-complexes
Del |Γ(X) and Del |Σ(X). The main loop of the Delaunay-refinement algorithm is modified to ensure that these protected
elements are preserved throughout the refinement passes. In this study, a simple topological constraint is enforced:
any new Steiner vertex found to delete a protected edge eA ∈ Del |Γ(X) is rejected. In practice, this means that a narrow
halo of low quality elements adjacent to sharp features are tolerated. The use of topology-based vertex rejection, as
opposed to weighted protecting-ball filtering, was found to reduce the size of this halo region in practice.

6. Sliver Suppression

Slivers are a class of low-quality tetrahedral elements that occur in three-dimensional Delaunay tessellations. Con-
sisting of four vertices positioned in a thin ‘kite’-like configuration, sliver elements are typically of very low shape-
quality – possessing pathologically small dihedral angles, but relatively small radius-edge ratios. Sliver elements are
not guaranteed to be eliminated by standard Delaunay-based refinement schemes, including the Frontal-Delaunay
algorithm presented previously. Various strategies designed to remove sliver elements are known to exist, including
non-linear optimisation methods based on sliver-exudation [36] and topological-optimisation [37]. In this study, a
simple method for the suppression of sliver elements is employed, in which slivers are eliminated through additional
refinement operations. Following [38], any tetrahedron τi ∈ Del |Ω(X) with a small volume-length ratio v(τi) ≤ v̄
is marked for refinement, where v̄ is a user-defined lower-bound on element volume-length ratios. Previous studies
[3,38] have shown that this modified refinement algorithm is convergent for v̄ ≤ 1/3. Noting that the volume-length
ratio is a robust measure of element quality, known to detect all classes of low-quality tetrahedrons, the resulting
meshes are of guaranteed quality, with bounded element dihedral angles and aspect ratios. The Frontal-Delaunay
algorithm presented previously was modified to impose additional bounds on element volume-length ratios during the
tetrahedral refinement phase. Additional details can be found in [2,3].

7. Experimental Results

The performance of the Frontal-Delaunay algorithm presented in Sections 3, 4 and 5 was investigated experimen-
tally, with the method used to mesh a series of benchmark problems. The algorithm was implemented in C++ and
compiled as a 64-bit executable. The Frontal-Delaunay algorithm has been implemented as part of the JIGSAW mesh-
ing package, currently available online [39] or by request from the author. The Frontal-Delaunay implementation is
referred to as JGSW-FD throughout, with the suffix ‘-FD’ denoting the ‘Frontal-Delaunay’ method. In order to provide
additional performance information, the well-known CGALMESH implementation [14] was also used to mesh the same
set of benchmark problems. The CGALMESH algorithm was sourced from version 4.6 of the CGAL package [23,40]
and was compiled as a 64-bit library. The CGALMESH algorithm is referred to as CGAL-DR throughout, with the suffix
‘-DR’ denoting ‘Delaunay-refinement’. All tests were completed on a Linux platform using a single core of an Intel
i7 processor. Visualisation and post-processing was completed using MATLAB.

7.1. Preliminaries

The JGSW-FD and CGAL-DR algorithms were used to mesh a set of surface- and volume-based benchmark problems
(Figure 3), comprising the ISO, FANDISK and BRACKET test-cases. The ISO test-case is an iso-surface problem,
consisting of a multiply-connected collection of smooth surface patches with 1-dimensional constraints at the open
boundary contours. The FANDISK object is a piecewise smooth surface model of a turbine component, incorporating

2 Simplexes possessing circumcentres interior to the hull of the element.
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Fig. 3. Meshes for the ISO, FANDISK and BRACKET test-cases, showing output for the JGSW-FD and CGAL-DR algorithms. Detailed mesh statistics
are shown including normalised histograms of element area-length and volume-length ratios, dihedral-angles and relative edge-lengths. Element
counts and total refinement times are also shown.

a network of curve constraints inscribed at connections between adjacent surface patches. The FANDISK problem also
includes sharply acute angle constraints, with a minimum angle of 20.1◦ subtended by segments in the input geometry.
The BRACKET object is a discrete CAD representation of a mechanical component, incorporating curve constraints at
connections between adjacent surface patches, as per the FANDISK example. The BRACKET problem also incorporates
acute angle constraints, with curve segments in the input geometry subtending angles as small as 6.5◦.

In all test cases, constant radius-edge ratio thresholds were specified for both surface and volume elements, such
that ρ̄ f = 1.25 and ρ̄τ = 2, corresponding to θmin ≥ 23.5◦ for surface facets. Additionally, uniform mesh-size and
surface discretisation constraints were enforced, setting h̄(x) = α and ε̄(x) = βh̄(x), with β = 1/4 and α a scalar length
equivalent to approximately 3% of the mean bounding-box dimension associated with each input geometry. The
JGSW-FD and CGAL-DR algorithms impose mesh-size constraints in a slightly different manner, with JGSW-FD treating
h̄(x) as a constraint on edge-length, and CGAL-DR treating h̄(x) as a constraint on the radii of the circumscribing balls
associated with each edge, triangle or tetrahedron. To compensate for this difference, the mesh-size targets associated
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with triangles and tetrahedrons in CGAL-DR were reduced by a factor of 4/3. Note that such scaling ensures that
JGSW-FD and CGAL-DR produce output with equivalent mean edge length metrics.

For all test problems, detailed statistics on element quality are presented, including histograms of element volume-
length and area-length ratios v(τ) and a( f ), element-angles θ(τ) and θ( f ), and relative-edge-length h̄r. The element
volume-length and area-length ratios are robust measures of element quality, where high-quality elements attain scores
that approach unity. The relative edge-length is defined to be the ratio of the measured edge-length ‖e‖ to the target
value h̄(xe), where xe is the edge midpoint. Relative edge-lengths close to unity indicate conformance to the mesh-size
function. High-quality surface triangles and interior tetrahedrons contain angles of 60.0◦ and 70.5◦ respectively.

7.2. A Comparison of JGSW-FD and CGAL-DR

The results in Figure 3 show that, overall, the new JGSW-FD algorithm typically outperforms the CGAL-DR imple-
mentation – generating slightly smaller meshes with improved element quality characteristics and mesh-size confor-
mance. Overall computational expense for both algorithms was observed to be similar. In terms of element counts,
the new method leads to a reduction of approximately 6%. Focusing on the distributions of element shape-quality,
it can be seen that the JGSW-FD algorithm achieves significant improvements in mean area-length and plane-angle
distributions in the case of the ISO and FANDISK problems, with smaller improvements in the volume-length and
dihedral-angle metrics realised in the BRACKET test-case. In all cases, it can be seen that tight, high-quality distribu-
tions (a f ' 1, vτ ' 1 and θ f ' 60◦, θτ ' 70◦) are generated by the Frontal-Delaunay algorithm (JGSW-FD), while the
standard Delaunay-refinement approach (CGAL-DR) leads to broad, lower-quality distributions about similar means.
Comparisons of distributions of element relative-length reveal the largest relative differences between algorithms, with
the JGSW-FD implementation showing significantly improved conformance to the imposed mesh-size function, seen
as a tight clustering of hr ' 1 in all test-cases. This result is not unexpected – confirming that the new size-optimal
off-centre point-placement scheme leads to high-quality vertex distributions that follow the imposed sizing function.
These results are consistent with those previously obtained by the author for smooth manifold geometries [1,2] using
a simplified version of the three-dimensional Frontal-Delaunay-refinement algorithm presented here. These results
demonstrate that the restricted Frontal-Delaunay paradigm can be extended to support piecewise smooth geometric
inputs, including collections of curves, surfaces and enclosed volumes.

Differences were also observed in the manner in which the JGSW-FD and CGAL-DR algorithms protect sharp 1-
dimensional features. Specifically, in the case of the FANDISK and BRACKET test problems, it was seen that the static
protecting-balls strategy utilised in the CGAL-DR algorithm led to significant local over-refinement, even creating
elements with smaller angles than those imposed by the geometry itself. In contrast, the protecting-collar approach
developed in the current work, and deployed in the JGSW-FD, algorithm was observed to introduce a single isosceles
element at the apex of any sharp 1-dimensional features, consistent with the methodology outlined in Section 5.
In JGSW-FD, an associated local refinement of elements adjacent to these constraints is employed only to ensure
that restricted edges are locally 1-manifold, typically leading to coarser local meshes. Overall, it is argued that the
protecting-collar techniques developed in the current work offer a sparser and higher-quality solution to the problem
of embedding arbitrary 1-dimensional constraints in restricted Delaunay meshes. Additional work focused on the
development of high-quality protecting-collars for problems involving sharp surface features is currently in progress.
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